
 

 
Abstract— Different gait patterns of stroke patients cannot be 

derived satisfactorily by traditional treadmill training robots. This 
paper presents a method to generate adaptive trajectories for 
controlling a lower extremity rehabilitation exoskeleton designed 
to help patients recover or improve walking ability. The 
model-based adaptation mechanism that consists of an inverse 
dynamic model, a trajectory generator and a fuzzy adaptation 
algorithm is proposed to minimize patient’s discomfort when 
active muscle contractions are not easily to be obtained. The 
effectiveness of the fuzzy adaptation algorithm, which accounts for 
the experience of a rehabilitation doctor, is demonstrated 
numerically with an illustrative example in this paper.  
 

Index Terms – Lower extremity model, fuzzy adaptation, 
rehabilitation, exoskeleton, gait recovery, treadmill training  

I. INTRODUCTION 

Manual locomotor training of a patient without normal 
walking ability is often tedious, and its effectiveness generally 
depends on the experience of the therapist. Rapid advances in 
mechatronics and robotics have motivated a flurry of research, 
in the last five years or so, on lower extremity exoskeletons (or 
orthoses) to assist the rehabilitation process.  

Treadmill training is one of the most common means of 
rehabilitation processes. Among them, the Lokomat (Hocoma, 
Swaziland) [1]-[2] is one commercialized gait training devices, 
which has actuated hip and knee joint. The AutoAmbulator [3] 
is a similar treadmill device to help patient restore normal gait. 
In a typical training process, the body weight of the patient is 
supported while his lower extremities are guided by two pairs of 
robot legs following a gait reference. These devices are shown 
to be effective in improving the walking ability in incomplete 
(spinal cord injured) SCI patients, but they are not likely to be 
the universal solution for all patients, due to the less-challenging 
locomotor tasks [4]. Some novel treadmill training methods 
have also been reported recently. The exoskeleton called 
LOPES created by Veneman et al. [5] was designed using cable 
transmission. Gravity balancing leg orthosis (GBO) developed 
at University of Delaware can alter the level of gravity load at a 
joint without power supply [6].  

Another branch of rehabilitation devices is assistive orthoses. 
They are mainly designed to prompt motor learning by 
combination of adding or dissipating power at the human joint 
while walking. MIT Ankle-Foot Orthosis is an impedance 
variable device to assist dropfoot gait [7]. Sawichi et al. [8] and 
Beyl et al. [9] have proposed a different actuating way based on 
pneumatic power. Compared with treadmill training, assistive 
orthoses are more portable, but they may face more problems in 
multiple environments as well. 

Most rehabilitation devices are designed according to the 
three motor learning principles, i.e. practice, specificity and 
effort [4]. More and more researchers are now trying to execute 
specific task and involve patient’s participation in their 
rehabilitation. As to the treadmill robots, existing designs, 
however, are mainly passive in nature in the sense that patients 
when feel uncomfortable cannot change their gait. There is a 
need for an exoskeleton design that facilitates collaboration and 
communication between physiologists and research engineers 
so that human locomotion physiology can be accommodated. 
Jezernik et al. ([10]-[11]) proposed an adaptation algorithm 
(based on parameterized gait description and optimization) for 
Lokomat to solve the problem between standard trajectory and 
individual walking pattern, which however, may not guarantee a 
satisfactory result in practice nor adapt to a broad trajectory due 
to the limitation of merely three parameters (amplitude, period 
and vertical deviation constant). On the other hand, Banala et al. 
proposed a force field scheme for safe and effective training, 
under which patients can develop their own gait pattern with 
certain assistance as they need [12]. Kiguchi et al. have 
succeeded in applying neuron-fuzzy controller in designing a 
EMG signal based exoskeleton. It is reported to be able to adapt 
to different user flexibly [13]. 

This paper has been motivated by the interests to develop an 
adaptive exoskeleton system that takes into account the 
experience of a rehabilitation doctor in implementing a training 
strategy, and involves patients in controlling their own 
rehabilitation. The remainder of this paper offers the 
followings:  

 We offer a model-based adaptation method, which consists 
of a trajectory generator, an inverse dynamic model that 
estimates the active torque of the patient, and a fuzzy 
adaptation algorithm, for specifying an adaptive reference 
trajectory of a lower extremity rehabilitation exoskeleton. 
The focus here is to derive adaptive trajectories to help gait 
patients gain or regain normal gaits while minimizing the 
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active torque exerted by the patient during training. 
 We present an inverse dynamic model of the rehabilitation 

exoskeleton, which provides a useful alternative to estimate 
the active torque of the patient (when active muscle 
contractions are not easily available) and hence any possible 
patient discomfort during gait training. 

 We formulate an adaptive algorithm based on fuzzy linguistic 
logics to implement the training strategy and account for the 
experience of a rehabilitation doctor. The effectiveness of the 
fuzzy adaptation algorithm has been demonstrated 
numerically with an illustrative example.  

II. OVERVIEW OF THE MODEL-BASED ADAPTATION (MBA) 

The model considered here is a four-DOF wearable lower 
extremity rehabilitation exoskeleton (LERE) similar to 
Lokomat [1].  Fig. 1(a) shows an example LERE developed at 
Zhejiang University, which has two pairs of (right and left) hip 
and knee joints. Each joint has one-DOF in the sagittal plane, 
and is independently driven by a servomotor/ball-screw 
assembly complete with an encoder and a force sensor for 
measuring its angular displacement and driving torque 
respectively. The joint angular displacement can be calculated 
from geometry; or more specifically, from the properties of a 
triangle formed by a screw, thigh/shank rod, and support rod as 
illustrated in Fig. 1(a). Similarly, the joint driving torques can 
be computed from forces measured by two force sensors 
between the screw and hinge on the thigh/shank rod. The 
training speed/time and reference gait pattern are set in advance. 

 
(a) Prototype LERE (Zhejiang University) 
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(b) Five-link human model 

Fig. 1 Wearable lower extremity rehabilitation exoskeleton 

A. Lower Extremity Representation 
Schematically, the patient is represented by a five-link 

bipedal walking model as shown in Fig. 1(b), where XY is the 
reference frame assigned at the end of the torso between the 
thighs. Using the lumped-parameter approach, the gravitational 
centers of right thigh and shank (with masses m1 and m2) are 
denoted as (x1, y1) and (x2, y2) respectively as shown in Fig. 1(b) 
where li denotes the length of the ith limb; Ii is its moment of 
inertia; di+1 is the distance between the gravitational center of 
the i+1th limb and the ith joint; and θi and θmi (i = 1, 2 or 3, 4) are 
the generalized coordinates and measured angles respectively.  

B.  Model-based Trajectory Adaptation 
Fig. 2 illustrates the MBA mechanism for specifying an 

adaptive reference trajectory to the patient-exoskeleton system 
designed to eliminate any possible patient discomfort during 
gait training. We assume that the closed-loop angular position 
servos are stable and well-tuned; the focus here to derive an 
adaptive trajectory θr(t) is to help the patient gain or regain 
normal gaits while minimizing the active torque exerted by the 
patient during training.  

The MBA mechanism consists of the following components: 
− a position-velocity-time (PVT) trajectory generator,  
− an lower extremity inverse dynamic model, and  
− a fuzzy adaptation algorithm. 

intτ

(t), (t)r rθ θ θ,θ,θ

mT

actτ

  training gait selection

ˆ ˆ ˆˆ,m,I,d

 
Fig. 2 Schematics illustrating model-based adaptation 

Patient Gait Representation  
In the PVT generator, trajectories are specified in real-time as 

reference inputs to the position servos of the exoskeleton. The 
PVT trajectory must satisfy the following criteria: 

The angular positions are represented by discrete control 
points (CPs) to preserve the characteristic of the current gait at a 
sampling rate of 50Hz. 
− The control points form a continuous sequence with smooth 

acceleration; otherwise, the exoskeleton could vibrate 
causing the patient to feel uncomfortable.  

− The walking pattern of a patient is periodic. The trajectory 
must be generated such that the two endpoints of a complete 
trajectory cycle must be the same. 
To meet the above criteria, each reference angular 

displacement θr(t) is characterized using a Fourier series. Since 
the training trajectory is periodic and complies with Dirichlet 
condition, it always converges. In discrete form, the fitting 
function is given in (1): 
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where k=1, 2, …, K; j=0, 1, 2, …; and Ts and T are the sampling 
period and the gait cycle time respectively.  The parameters (ak 
b0 and ck) in (1a-c) can be determined by minimizing (2) using a 
nonlinear least square method: 
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where sj is the CP angular position value at the jth time instant.  
For synchronized two-leg walking, the phase difference 
between the left and right legs is half a gait cycle T, or 

( ) [ (2 1) / 2]r left r rightt t j Tθ θ− −= + +  (3)

Reference Trajectory Correction  
As shown in Fig. 2, the MBA mechanism takes advantages of 

the measured trajectory along with the basic patient information 
(such as weight, height, age, gender, etc.) to estimate the 
following parameters characterizing the human-machine model:  
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With the adjusted model parameters and measured 
displacement and torque data of the exoskeleton, the active 
torque actτ through active muscle contractions of the patient can 
be estimated from the inverse dynamic model. Since the walking 
pattern is typically periodic, the computed active torque helps 
predict the patient’s inclination to change the gait (magnitude 
and direction) in the next walking cycle. 

As will be discussed, the inverse dynamic model provides a 
basis for the fuzzy adaptation algorithm that modifies the 
standard PVT trajectory to accommodate different walking 
patterns of the patient while approaching the normal gait 
boundary to avoid ill-developed trajectory.  

III. INVERSE DYNAMIC MODEL 

Design analysis and real-time applications of the exoskeleton 
require both the forward and inverse dynamic models.  Unlike 
the forward dynamic model which analyzes the trajectory for 
the given torques acting on the patient-exoskeleton during 
design, the inverse dynamic model is typically computed in real 
time.  The inverse dynamic model defined here predicts the 
active torque τact (through active muscle contractions of the 
patient) for a given gait trajectory. The following assumptions 
are made in the model:  
a)  The lower extremity of a typical human subject is symmetric 

about the sagittal plane; thus, only the right lower limbs 
(denoted by i = 1, 2) will be described.  

b)  During gait training, the patient’s torso is suspended. The 
torso motion and interaction between two legs are neglected. 

A. Kinematic and Dynamic Equations 
As shown in Fig. 1(b), θi and θmi (i = 1, 2) are the generalized 

coordinates and measured angles respectively.  For each leg, the 
relationship between the position vectors T

1 2[ ]m mθ θ=mθ and 
T

1 2[ ]θ θ=θ  is given by (4):  
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Similarly, the measured torque [ ]T
1 2m mτ τ=mT can be 

expressed in the generalized (joint) coordinates in (5): 
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The dynamic model of the patient-exoskeleton system has the 
following form: 
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In (6), i ie ipm m m= + ; i i iI I I= +e p ; and the subscripts “p” and 
“e” denote the patient and exoskeleton respectively. In (6), the 
actuating torque τm supplied by the drive motors must balance 
the joint friction τf, the torque τT due to the reaction force FN 
acting on the supporting leg by the treadmill, and the active 
torque τact produced by the patient through muscle contractions 
which is assumed to represent the comfort level directly. 

B. Model Validation 
Since active muscle contractions are not available for direct 

τact measurements, experiments were performed with a passive 
healthy subject on the prototype LERE shown in Fig. 1(a) to 
validate (6) for the inverse dynamic model. Numerical values 
characterizing the LERE, along with data characterizing human 
inertia properties [17], are summarized in Table 1. 

TABLE 1: PARAMETERS FOR SIMULATION 

 Symbols Thighp 
(i=1) 

Thighe 
(i=1) 

Shankp 
(i=2) 

Shanke 
(i=2) 

Length (m) li 0.39 0.39 0.50 0.50 
Mass (kg) mi 9.52 1.43 4.48 1.82 
Inertia (kg.m2) Ii 0.14 0.02 0.09 0.04 
Center of mass (m) di 0.20 0.20 0.29 0.29 

In this experiment, a sequence of angular displacements and 
actuating torques at the left hip and knee joints of the LERE was 
experimentally recorded. Neglecting friction and the treadmill 
reaction acting on the supporting leg, the actuating torques at 
the knee and hip joints were computed from (6) with the 
measured hip and knee trajectory as shown in Fig. 3. The 
theoretical predictions are compared against experimentally 
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obtained torque measurements in Fig. 4, which agree in general. 
Some discrepancies may attribute to both the mechanical system 
and the human subject:  
− From the exoskeleton/treadmill system, errors are primary 

due to friction in the mechanical joints since the patient is 
passive and supported by the torso. 

− From the subject, two likely factors are the parameter and gait 
differences between the standard data and test subject, and 
the potentially unaccountable intermingling active torque. 
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Fig. 3 Measured left hip and knee joint angles, θm1 and θm2 
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Fig. 4 Comparisons between inverse dynamic model and measured torques 

IV. FUZZY ADAPTATION ALGORITHM  

In order to take into account the experience of a rehabilitation 
doctor, the training strategy is implemented using an adaptive 
algorithm based on fuzzy linguistic logics. The adaptation 
algorithm modifies the pre-stored trajectory in the form of 
control points, which are referred to here as initial reference 
trajectory derived from gait pattern database of similar but 
healthy subjects. The adaptation algorithm adds its output to the 
discrete control points in the PVT trajectory generator. The 
function of the fuzzy adaptation algorithm is twofold: 
− Establish an experiential mapping from the active torque τact 

derived from the inverse human-exoskeleton model to the 
deviations Δsj needed on the control points of the trajectory. 

− Constrain the adjusting zone based on the training 
performance within an upper and a lower boundaries 
(denoted as  and θ θ  respectively) of the normal gait. 
To accommodate different patients, we normalize the two 

inputs to the fuzzy adaptation algorithm so that its output (or the 
deviation Δsj) is kept within bounds as follows: 
− An “adjusting margin” [ ]0,1jη ∈  is defined in (7): 

( ) ( )
( ) ( )

1 / 1  if 0 and 1
/ 1     if 0 and 

0        otherwise             

act

j act

θ θ τ θ
η θ θ θ τ θ θ

+ ± +

+ ± ± + ±

− − > <⎧
⎪= − − < >⎨
⎪
⎩

 
(7)

where ( ) / ( )r j jθ θ θ+ = ; and ( ) / ( )j jθ θ θ± = .  
− Another factor influencing the adaptation is the normalized 

active torque τN(j) corresponding to θr(j) defined in (8): 
{ }0min / ,  1N actτ τ τ=  (8)

where τ0 is a default upper boundary of the active torque. 
In (7), a larger adjusting margin implies that more trajectory 

deviation can be made. To avoid oscillations around and over 
the boundary, the adjusting margin is set to zero when the 
current trajectory is out of bound; no further adjustment is 
needed at this point while the doctor is being informed (of the 
adjusting margin, active torque and hip-knee angle-relationship) 
through the control interface.  The default torque boundary τ0 in 
(8) can be determined from the experiments performed on a 
range of different patients.  

A. Fuzzy Rule-based Adaptation 
The adaptation rules can be formulated with the help of a 

rehabilitation doctor. The normalized input variables η and τN 
and the corresponding adjustment magnitude |Δsj| (or the output 
of the fuzzy adaptation algorithm) are characterized the fuzzy 
sets of the following linguistic values in (9a-c):  

Input η:  { }, , ,NE LI NO LA  (9a) 

Input τN:  { }, , , ,NE LI NO LA EX  (9b) 

Output |Δs|: { }, , ,NE LI NO LA  (9c) 
where the membership functions and their legends are given in 
Fig. 5.  The algorithm output is determined using the linguistic 
rules in the following form: 

IF  is A and  is B, THEN  is N s Cη τ Δ  

where A, B and C are the fuzzy values of η, τN and |Δs| 
respectively. For example, when the adjusting margin is large 
and active torque is normal, the adjustment derived should be 
normal. To avoid being over-sensitive, a dead-zone is assigned 
such that when the adjusting margin (or active joint torque) is 
“NE”, no adjustment (NE) is made.   

Nτ

( )Nμ τ
NE LI NO LA

η

( )μ η
NE LI NO LA EX

jsΔ

μ

NE

LI NO LA

(a) membership function of Nτ (b) membership function of η

(c) membership function of jsΔ
 

Fig. 5 Input and output membership functions 

For a two-input system (η and τN with four and five fuzzy 
values respectively), a fully populated rule base has 4×5=20 
input rule combinations given in Table 2, where the braced 
decimal means the weight of that fuzzy rule in the Mamdani 
model [20]. The output membership function is defuzzified 
using the centroid method [20]. Since the deviation has the same 
direction as the active torque, the final adjustment can be 
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calculated from (10):  
sgn( )j j acts s τΔ = Δ  (10)

TABLE 2: FUZZY ADAPTATION LAW  
Adjusting Margin  

NE LI NO LA EX 
NE NC(1) NC(1) NC(1) NC(1) NC(1) 
LI NC(1) LI (0.2) LI (0.5) LI (0.1) LI (0.1) 
NO NC(1) LI (0.5) LI (0.9) NO(1) NO (0.8)

Active 
Joint 
Torque LA NC(1) NO (0.8) NO(1) LA (0.8) LA(1) 

The adaptation algorithm is executed using 4 iterative steps: 
Step 1: Calculate the normalized active torque exerted by the 

patient from the inverse dynamic model and (8). 
Step 2: Calculate the adjusting margin from (7). 
Step 3: Given τact(j) and η(j), determine the adjustment Δsj from 

the fuzzy adaptation law and  (10). 
Step 4:  Update the trajectory, ( ) ( )new

r r jj j sθ θ= + Δ .  

B. Illustrative Application 
The fuzzy adaptation algorithm has been written (in 

MATLAB) for simulating the effect of the fuzzy adaptation law 
on the reference trajectory to the patient-exoskeleton controlled 
system. As an illustration, a virtual patient with a periodic 
“abnormal right knee gait” is assumed. Numerical values used 
in the simulations are based on the LERE shown in Fig. 1 and 
Table 1. The upper and lower boundaries (  and θ θ ) of the 
normal gait are based on [14].   

The algorithm follows the same steps outlined in the previous 
section except that the active torque of the virtual patient’s knee 
is calculated using the following linear approximation: 

( ) ( )act p p rk j jτ θ θ⎡ ⎤= −⎣ ⎦
 (11) 

where kp is the impedance coefficient;  θp and θr are the CP 
values representing the patient gait and the adaptive reference 
trajectory at the jth time instant. Without loss of generality, kp is 
assumed to have a value of unity. The trajectories (Fig. 3) are 
represented by Fourier series (1) where K=5 and Ts=0.08s for a 
gait cycle time of T=4s.  

The adaptation process is best illustrated by the simulated 
results given in Figs. 6, 7 and 8 showing five iterations (denoted 
as Iterations 1 to 5) from the initial to the final adapted reference 
trajectory for one walking cycle.  Figure 6 shows the effect of 
adaptive iterations on the knee/hip joint-coordination. The 
corresponding adjusting margin η and the animated active 
torque τact of the virtual patient using (11) are graphed in Figs 
7(a) and 7(b) respectively.  Figure 8 compares the patient 
abnormal gait (denoted as “Patient Gait”), the initial reference 
(or a specified trajectory in-between the bounds of a normal gait 
[14]), and the final adapted reference trajectory. Some 
observations made are briefly summarized as follows: 
− As illustrated in Fig. 8, an abnormal gait could significantly 

deviate from the normal gait boundaries. The adaptation 
algorithm takes three iterations to converse reducing the 
maximum active torque by 75% (Figs. 6 and 7). 

− The local maximums |τact| occur at locations where η=0 (Fig. 
6), the physical insights of which can be explained using Fig. 

9 with (7) and Fig. 8:  
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Fig. 6 Coordination between right knee and hip joints 
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Fig. 7 Adaptation process of the algorithm 

0 1 2 3 4
-10

0

10

20

30

40

50

60

70

time (s)

K
ne

e 
an

gu
la

r p
os

iti
on

 (d
eg

.)

 

Patient Gait
Final Ref. Trajectory
Initial Ref. Trajectory
Upper Bound (Normal)
Lower Bound (Normal)

 
Fig. 8 Adaptation from initial to final reference trajectories 

 Consider the interval t=[0, 1.2s] where θp<θr and τact<0. 
Figure 9(a) shows the posture when the right knee at its 
supporting phase and its corresponding τact has a local 
negative maximum. Since the reaction torque and friction are 
neglected, the right-knee motion is supported by the torques 
of the mechanical driver and the muscle contractions of the 
patient. Negative τact implies that the mechanical driver must 
supply an additional torque to overcome the opposing τact. As 
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defined by (7), the lower bound dictates when τact<0.  
Provided that the reference θr is above the lower boundθ , η 
is set proportional to ( rθ θ− ) allowing for a trajectory 
correction to be made.  The possible adjusting zone is shaded 
in Fig. 9(a), and has the same direction as τact according to 
(10); thus, the result is to decrease the angular displacement 

2mθ  and is consistent with the patient gait as shown in Fig. 8.  
When rθ θ≤ , η  is zero (or NE in fuzzy linguistics) implying 
no adjustment (NC) and hence no further reduction in actτ . 

 However, during t=[1.5s, 3.5s] where θp>θr and τact>0, the 
maximum τact is positive in the same direction as the 
mechanical driver, and occurs when the right knee in its 
swing phase as shown in Fig. 9(b). For τact>0, the torque 
demand from the motor decreases, and the adjusting margin 
is dictated by the upper bound as defined in (7).  As long as θr 
is below the upper boundθ , η is set proportional to ( rθ θ− ) 
to allow for correction on the reference trajectory. As shown 
in Fig. 8, the angular displacement of the mechanical knee 
joint can be increased approaching the patient original gait 
trajectory. Once rθ θ≥ , η is set to zero; no further 
adjustment on the reference (and hence τact) is made keeping 
the patient gait near or at the upper bound. 

− The above observations suggest that the adjusting margin η 
(along with the active torque τact) offers an effective means to 
accommodate different patients and their training goals.  

actτ
Adjusting zone

mτ

2mθ

 
actτ

Adjusting zone

mτ
2mθ

 
(a) Posture at negative max.τact (b) Posture at positive max. τact 

Fig. 9 Postures at the local maximums of τact 

V. CONCLUSION 

A model-based adaptation (MBA) mechanism for specifying 
an adaptive reference trajectory of a lower extremity 
rehabilitation exoskeleton (LERE) has been presented. The 
MBA mechanism consists of a trajectory generator, an inverse 
dynamic model that estimates the active torque of the patient, 
and a fuzzy adaptation algorithm.  It offers an effective means to 
incorporate the experience of a rehabilitation doctor, 
accommodate walking patterns of different patients, and 
supervise during the gait training while minimizing the patient 
discomfort.  Experiments with a passive healthy subject on the 
prototype LERE at Zhejiang University suggest that a complete 
inverse dynamic model can provide a useful alternative when 
active muscle contractions are not easily available. A fuzzy 
adaptation algorithm has been developed, and its effectiveness 
has been demonstrated numerically with an illustrative example.  
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